首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  国内免费   1篇
化学   17篇
力学   2篇
数学   3篇
物理学   22篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有44条查询结果,搜索用时 203 毫秒
1.
Volk  T. R.  Bodnarchuk  Ya. V.  Gainutdinov  R. V.  Kokhanchik  L. S.  Shandarov  S. M. 《JETP Letters》2021,113(12):769-779
JETP Letters - Studies of ferroelectric nano- and microdomain structures formed in LiNbO3-based optical waveguides are reviewed. Nanodomain structures of a given configuration have been written in...  相似文献   
2.
3.
The vaporization behavior and vapor spectra of Ga, In and Tl nitrates and chlorides in the tube furnace was investigated using an UV spectrometer with CCD detector. Fifty spectra in the wavelength range of 200–475 nm were collected in each experiment during the vaporization step, with temperature increase from 473 to 2673 K. The vaporization patterns were compared for the pyrocoated, non-pyrocoated graphite tubes, and Ta-lined tubes. Nitrate and chloride aqueous solutions and chloride slurries in chloroform were used to distinguish the impact of hydrolysis on the vaporization behavior of these chlorides. The spectra of oxygen and chlorine containing molecules, presumably of suboxides, chlorides and dichlorides were identified upon variation of the experimental conditions. The release of suboxide vapors due to the reduction of oxides by carbon was promoted after the decomposition of nitrates. The presence of other elements on the vaporization surface, or the isolation of the sample from the graphite surface by Ta-lining, impeded the vapor release and reduced the intensity of molecular bands. Adsorption of chlorine onto graphite caused a decrease of chloride and dichloride bands. The suboxide bands were observed in the spectra of Ga and In chlorides introduced in the tube as aqueous solutions, due to partial hydrolysis.  相似文献   
4.
Magnetron sputtering deposition is a widely used technique to deposit thin film precisely at nanoscale level. During the deposition of metal oxide thin films, reactive oxygen gas is introduced into the deposition chamber. Pure metal and metal oxide materials can be used as sputter target, although the simplest way is by using a pure metal target. In such reactive process, the effect of target poisoning significantly influence the deposition process and the growth mechanisms of metal oxide thin films became very complex. In general, external parameters such as discharge power, working pressure, reactive gases ratio and substrate temperature are used to optimize the properties of deposited thin films. Then, ex-situ analyses such as scanning electron microscope and X-ray diffraction analysis are performed to obtain the optimized parameter. Sample depositions and ex-situ analyses consume time to achieve the goal through try and error. In this article, in-situ plasma diagnostics are reviewed focusing on an optical emission spectroscopy to precisely control and investigate the sputter target poisoning effect during the deposition of metal oxide thin films. The emission of atomic lines from several metal and oxygen atoms were used to discuss the deposition mechanisms and their correlation with the deposited thin films was observed. Finally, the deposited metal oxide thin films were proposed and tested for several applications such as gas sensor and frequency selective surface glass.  相似文献   
5.
张立宁  何进  周旺  陈林  徐艺文 《中国物理 B》2010,19(4):47306-047306
This paper studies an oxide/silicon core/shell nanowire MOSFET(OS-CSNM).Through three-dimensional device simulations,we have demonstrated that the OS-CSNM has a lower leakage current and higher I on /I off ratio after introducing the oxide core into a traditional nanowire MOSFET(TNM).The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off,drain induced barrier lowering and subthreshold swing degradation.Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM.  相似文献   
6.
Computer simulation in a single domain multilayer model is used to investigate magnetization flop in magnetic tunnel junctions, exchange-biased by pinned synthetic antiferromagnets with the multilayer structure NiFe/AlOx/Co/Ru/Co/FeMn. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy and hence increased coercivity of the Co layers in the synthetic antiferromagnet. However, when the synthetic antiferromagnet is not or weakly pinned, the magnetization directions of the two layers sandwiching AlOx, which mainly determine the magnetoresistance, are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal MR change from the high MR state to zero, irrespective of the direction of the free layer switching. This emphasizes an importance of a strong pinning of the synthetic antiferromagnet at small cell dimensions. The threshold field for magnetization flop is found to increase linearly with increasing antiferromagnetic exchange coupling between the two Co layers in the synthetic antiferromagnet. The restoring force from magnetization flop to the normal synthetic antiferromagnetic structure is roughly proportional to the resistance to magnetization flop. Irrespective of the magnetic parameters and cell sizes, the state of magnetization flop does not exist near Ha=0, indicating that magnetization flop is driven by the Zeeman energy.  相似文献   
7.
Microchimica Acta - The authors describe an impedimetric nanosensor for aptamer-mediated detection of ATP. A triangular junction of polysilicon substrate is used as a transducer. The aptamer was...  相似文献   
8.
Tissue engineering uses some engineering strategies for the reconstruction and repair of the compromised tissues, among which the use of biomaterials as an alternative to conventional transplants is significant. However, not many research has been developed on the use of biopolymer nanostructure microanalysis and calcium phosphate composites of carbon apatite in PLA as scaffolds for tissue regeneration. In this work, poly (lactic acid) filaments with 5% and 20%, carbon apatite (cHA) were microanalysis to produce a 3D printing scaffold. The scaffolds were characterised by the Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX) techniques, thereby making it possible to notice a good load dispersion. The microstructural analysis of the scaffolds was carried out by computerised micro-tomography to determine the roughness, morphological parameters of pore size distribution, porosity, as well as better visualisation of the distribution of particles. A computational in vitro and microanalysis tests to assess the biocompatibility viability of the PLA/cHA structure with a variation of scaffold geometry to evaluate their effects on morphological, physicochemical and mechanical properties were also carried out. The characterisation of Ca and P release assays were observed for longer incubation times and the dynamic condition control to simulate the stresses suffered by the biomaterial exerted by the flow of fluids was achieved. The results obtained indicated that the micrographs of the cross-sections of the scaffolds showed a flatness in the loaded material when compared to the 100/0 PLA. Furthermore, the apparent porosity of 5% and 20% of cHA scaffolds gave a porosity percentage of approximately 62% and 41% respectively. The reduced summit height, reduced valley depth and the percentage upper and lower bearing area difference of the samples are 16.33 nm, 9.62 nm and 75.07% respectively. The morphological characterisation surface roughness analysis and tolerance insertion gave a favourable reduced porosity result for the composite scaffolds with 5% of cHA. Hence, this work will assist biomaterial industries in the development of biomaterials which have been engineered with biological systems to meet medical purposes.  相似文献   
9.
10.
《Arabian Journal of Chemistry》2020,13(11):7978-7989
This work presents a study of microwave absorption properties of PAni/Fe3O4/PVA nanofiber composites with different ratio of Fe3O4 nanoparticles. The morphology of the composites nanofibers study by Field Emission Scanning Electron Microscopes (FESEM) and Transmission Electron Microscope (TEM) showed that the low content of Fe3O4 nanoparticles presence in the composites nanofibers indicates very much uniform surface, in the composites nanofiber without many bends, but some bends develop at higher content of Fe3O4 nanoparticles as indicated in the TEM image. Image-J software was used to further investigate the diameter of the composites nanofiber and found to be in the range of 152 to 195 nm. The nanofiber composites show excellent electric and magnetic properties and therefore vary with the addition of Fe3O4 nanoparticles in the composites nanofiber. In addition the PAni/Fe3O4/PVA composites nanofibers were further characterized by X-ray diffraction spectra (XRD) and Four Transformation infrared spectra (FTIR). The XRD pattern shows the presence of PAni nanotubes containing Fe3O4 nanoparticles by indicating peaks at 23.4⁰ and 35.43⁰ which was further supported by FTIR analysis. Microwave vector network analyzers (MVNA) were used to estimate the microwave absorption properties of the composites nanofibers. The absorption parameters was found to be −6.4 dB at 12.9 GHz within the range of X-band microwave absorption frequency, this reflection loss is attributed to the multiple absorption mechanisms as a result of the improved of impedance matching between dielectric and magnetic loss of the absorbent materials demonstrating that these materials can be used as protective material for electromagnetic radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号